
Ir~i)_q

I Programming Processor Interconnection
Structures

SMII

x'-'7

y'
v K

o r__
_ __ '

v-'~rK~.0

DITIBTO Vr
AN

1)V rmn ofsr Am if S(
Ma th S('iellc e BuiTcrlding

1ý ' r ' 2 010600

Unclassified
%ECUPITY CLASSiFICATION OF THIS PAGE (Wh.n Does Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I.REAT NUMBER 2, GOVT ACCESSION NO 3. RECIIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Programming Processor Interconnection Structures Technical, Interim
9. PERFORMINtG ORG, RITPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR 6'RANT NUMBER(s)

Lawrence Snyder N00014-80-K-0816
N00014-80-K-0360

SP PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, T,&i•K
Purdue University AREA & WORK UNIT NUMBER$

Department of Computer sciences Task SRO-100
West Lafayette, Indiana 47907

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research October, 1983.
Information Systems Program IS. NUMBER OF PAGES

Arlington, Virginia 22217 26
14. MONITORING AGENCY NAME A ADORESS(If dlfferent from Controlling Office) IS. SECURITY CLASS. (of ihis report)

Unclassified

15s. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of thli Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abtroct entered In Block 20, It different from Report) .

IS. SUPPLEMENTARY NOTES

19. lr.y WORDS] (ontinu•r on reverse alde if necesesry and Identify by block number)

p.-dilOl computation, VLSI, configurable architecture, CHiP processor, graph
er•beddings, switch lattice, integrated interconnection structure, processor
interccnnection programming

. ABSTRACT (Continue on reverse side if neceeesry and Identify by block number)

arallel computer architecture complicates the already difficult task of paral-
lel programming in many ways, e.g., by a rigid interconnection structure,
addressing complexity, and shape and size mismatches. The CHiP computer is a
new architecture that reduces these complications by permitting the processor
interconnection structure to be programmed. This new kind of programming is
explained. Algorithms are presentEd for several interconnection patterns
including the torus and the complete binary tree and general embedding
strategies are identified. *-

DD I JAliI 1473 EDITION OF I NOVs515s OPSOL•iTE
S/N 0102-LF-014-6601 Unclassified

SECURITY CLA4IFIIICATION OF THIS PA%;f (fthn ,Dole Entered)

PROGRAMMING PROCESSOR INTERCONNECTION
STRUCTURES*

Lawrence Snydeer

Department of Computer Sciences
Purdue University
West Lafayette, IN

47907

OWS'-TR-381
October, 1981

-i
V ABSTRACT

Parallel computer architecture complicates the already
difficult task of parallel programming in many ways, e.g., by
a rigid interconnection structure, addresging compjlexity,
and shape and size mismatches. The CHiP computer is A"new
archit,,cture that reduces these complications by' pe:,mitting

the processor interconnection structure to be progearnmed.
This new kind of programmming is explained. Algorithms are
presented for several intercontection patterns including the
torus and the complete binary tre'. and general embedding

strategies are identified.

n

/ 'i, H

/ /

'The research described herein is part of the Blue CHIP Project. Funding is provided in part
by the Office of Naval Research under Contract No. N00014-80-K-0818 and Contract No,
N00014-81-K-0360, Special Research Opportunities Program, Task SRO-100.

. -A
__.

- - - - - - - - - - - - -

PROGRAMMING PROCESSOR INTERCONNECTION

STRUCTURES*

Lawrence Snyder

Department ot Computer Sciences

Purdue University

West Lafayette, IN

47907

Intro cduc tion

Although it is a difficult task to design a sequential computer archi-

tecture that efficiently hosts sequential algorithms, it is perhaps even

more challeng.-ig to design a parallel architecture that efficiently hosts

parallel algorithms. The aspects of parallel computaLion that frustrate

the harmonious match between algorithm and architecture are many:

Rigid i•terconnection structure: Parallel architectures tend to pro-

vide a fixed interconnection structure between processing elements

(PE's). For example, ILLIAC IV is mesh connected; the Massively

Parallel Processor [1] has a toroidal structuri:,, But reicently

developed parallel algorithms use a variety of PE interconnection

structures. For example, there are tree algorithms for everything

from sorting to graph coloring [2] as well as applicative language

expression evaluation [3], hexagonally connected pipelined algo-

'The research described herein is part of the Blue CHiP Project. Funding is provided in part.
by the Office of Naval Research under Contract N 1. N00014-80-K-0816 and Contract No.
N00014-81-K-0360, Special Research Opportunities Program, Tamk SRO-1O0.

_ _-, I:

-2-

rithms for numeric problems [41, "double trees' for searching and

data base operations [5], and many nonstande'rd interconnection

graphs. (See Figure 1.) The problem is that t~,ic rigid interconnec-

tion structure biases the architecture towards a particular class of

algorithms and makes it difficult to use foi any other class of algo-

rithms.

Problem shape and size mismatch: Parallel algorithms tend to

require a particular number of PE's in a particular shape that is

determined by the problem's input, but the architecture provides 4

only one fixed size and shape. For exarrole, an algorithm requiring

an n/2 x 2n array of PE's does not "fit" on an nxn mesh connected

architecture even though there are enough processors.

Addressing complexity: Certain parallel architectures, e.g., the Ultra

Computer [6] and the Cube connected cycles [71, provide a "univer-

sal" interconnection structure in which a logictil interconnection

structure is implemented on the physical structure by means of

packet routing operations. Time is wasted in unproductive packet

switching. More seriously, the programs stored in the PE's are com-

plicated by the need to compute target addresses.

Paucity of programmirng languages: Although languages such as APL

and Concurrent Pascal have "parallel semantics," most parallel algo-

rithms are specified in an ad hoc manner. Thus there is little gui-

dance from the programming language as to what features t- optim-

ize for.

These and other complications explain in large measure why highly paral-

.O
lei computers have been difficult to program.

.........

-3-
(a) (d)

(b)

Figuare 1. Interconnec~tioni patterns for parallel algorithms (a) mesh. (b) hexago-i
nially connected mash~, (c) toru~s, (d) binary tree, (e) double tree.

---- " " • '.

--4-

We report on a new family of architectures, the Configurable, Highly

Parallel (CHiP) computers, that respond to the demands of parallel algo-

rithms, especially the need for locality and flexibility. The central con-

cept is this:

The processing elements are embedded into a programmable switch

lattice that permits not only ths programming of the PE's but also

the direct programming of their interconnection structure.

This second kind of programming not only ameliorates the difficulties

mentioned above, it also permits the convenient composition of parallel

algorithms. It has even led to the development of entirely new parallel

algorithms [8]. In this paper we give a synopsis of the CHiP architacture

and then explore the consequences of this new kind of progrumming,

interconnection structure prograimming. The main results are algo-

rithms of programming various interconnection structures.

Synopsis of tlw CHiP Computer

[Readers familiar with the CHiP Computer may wish to omit this sec-

tion.]

A CHiP Computer is composed of ;. set of homogeneous microproces-

sor elements connected at regular intervals to the switches of the switch

lattice. The lattice is composed of programmable switches connected by

data paths to each other or to the PE's. Perimeter switches are attached

to external storage devices. Figure 2 illustrates two examples of this

sLrucLure.* Each PE has its own local program and data memory and

'Notice that the pictures are not drawn to scale. The PE's are much larger than
the swi-.ches.

L

-57-.

•ach switch contains enough local memory to store several confluration

setLlngs.

(a) (b)

Figure 2. Two lattices. Circles represent switches; squares represent
processing elements; lines represent data paths.

A configuration setting is an instruction which, when invoked, causes

the switch to form a passive connection between any combination of its

incident data paths. Notice that this is circuit switching rather than

packet switching and that fan out is possible at the switches. Figure 3(a)

sbows the configuration settings for a mesh pattern for the iattice of Fig-

ure 2(a); Figure 3(b) shows the same lattice -.onfigured as a binary tree,

To implement an interconnection pattern, the switches are loaded with

configuration settings by an external control processor via a "skeleton"

that is transporent to this discussion, This activity is usually performed

in parallel with the controller's loading of the PE programs.

1it

S -~ -- ~E

(a) (b)0 00

0o 0o o 0 -o- .0--00o-00 o 0 0,.0 00o

0 0 0
00

o 0 0 0 0 0 0 0 0 0 0 0 0-0o 0-- 0 0

0 0

o0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0000 0 0 0 0 0 0 0 0 00 0 0 0 0 O~ 0

0 0

0 0 0 0 0 0 0 0 0 0 000 0

0 0
0 0 0 0 0 0 0 0 0 0 000 00000 000 0

.-- 0 00- 0 0 0
0, 0 0 0 0 o 0 o o 0 0 o 0 0 0 0 0 0 0 0 0

Figure 3. Two configurations of the lattice in Figure ?(a).

A parallel program is viewed as the composition of several parallel

algorithms each with its own processor interconnection pattern. Each of

these interconnection patterns and the associated PE code is called a

"phase." The controller loads the PE's and switches with the instructions

for several phases. Processing begins with a broadcast command from

the controller to the switches to invoke a particular stored interconnec- I

tion paLtern. This also causes the PE's to begin synchronously executing

their local programs. The interconnection structure remains static

throughou~t the execution of the phase. When the phase completes,

another broadcast command causes a different interconnection pattern

f.

S~~-7=

to be invoked and a new phase to be initiated. The action continues in

Utlv manner from phase to phase.

"Several points are worthy of special emphasis. First, to implement

an interconnection pattern requires that all configuration settings be

stored in the same location in all of the switches, This is so that the

broadcast command can take the simple form "invoke the sett'iag in loca-

tion z," thus making possible one step phase transitions. Second,

switches can provide the ability for data paths to "crossover" one

another, i.e., a setting can implement multiple data path interconnec-

tions. Third, the PE's need not know to whom they are connected, they

simply execute instructions of the form READ EAST, WRITE NORTHWEST,

etc. The interconnection pattern explicitly implements the routing.

Fourth, the data paths are bidirectional.

Examp•te: Consider the problem of finding the solution to a system of

linear equations, Az=b, where A is an nxn band matrix of width p and

b is an n vector. To solve the problem we use the Kung-Leiserson LU

decomposition pipelined (systolic) algorithm [4] and their lower tri-

angular system (LTS) solver algorithm. The interconnection pattern

(for p =4) is shown in Figure 4. The exact operation of the algorithms

is unimportant except to say that they are pipelined and the data

moves in the direction of the arrows. Phase 1 decomposes A into

lower and upper triangular matrices, A=LU, and at the same time

solves the lower triangular system, Lv=b. Figure 5 shows the embed-

ding into the lattice of Figure 2(a) of these two algorithms -- the L

matrix is transferred directly from the decomposition processor to

the LTS solver. The z vector result can be formed by solving Uz-y,

which is done by rewriting U as a lower triangular matrix and using

SI_

00

2 3

0 0j

7 8 9 1

FIGUR 42 1ugLiesnSsoi ras[3. a UDcmoiin b

Lower 14agua 1y5msslvr

a j.- i -2,
16~

a'.ai'i ai,i-2 ai,i-3

01,1
0; 15 12,o : oB 0

1-2 .1,

13 -9 5 10: OC 0!

'kk+3 Uk,k+2 ukk+1 Ukk Yr

FIGURE 5. The embedding of the LU-Docomposition processors (1-1)
and the lower triangular sysLcui solver (A-D) of Figure 4 in

the lattice of Figure 2(a). The cinbcdding appcars in the

North-West corner of the lattice.I
I i:

s .1

L I, _ _ _ . .. • '.. t •.' .'-,,: •_,7 •" .

-10-,

the LTS algorithm, but U must be completely generated before being
rewritten. Thus, phase I saves the U matrix and y vector values in

preparation for phase 2 by threading them through the lattice. (See
i°•Figure 6.) In phase 2 the values are threaded back through the lat-

tice in the opposite direction, which effects the rewriting operation,

and they are input to another LTS solver. (See Figure 7.) The result

exits from the array at the left end of the LTS solver.

(1 [r

>>

S••r.. L;Kr "-S -

-1 f,-~-C 0- - -, -- r -J-c

SFiguep Threading the U matrix Fiue7. Reverse traigofth

Sand y vector values of U and y values for
Phase 1. Switches not Phase 2 together with a

iisho*Wn,1 second LTS solver.

The example is specialized to a band matrix of width p =4. A general

procedure that solves this problem for arbitrary width bands would differ

only in the interconnection structure; the various PE programs required

for an arbitrary width solution are all represented in this p=4 case. Thus,

it is the programming of interconnection patterns that is of central

importance.

Proerronemtio theirnecio owntrirht

We will emphasize the specification of uniform rather than ad hoc

and heyareoften the building blocks that are used by the less regular

patterns. First, we must consider the lattice that is to hostL the intercon-

nection pattern.

As indicated in Figure 2, a variety of different lattices a~re possible,

although any particular architecture will use only one. Lattices differ in

complexity in several ways: corridor width, degree, and crossover capa-

bility. The corridor width, w, is the number of switches separating two

adjacent PE's, e.g., the lattice of Figure 2(a) has w =1 and that of Figure

2(b) has w=2. Any lattice can embed an arbitrary graph, but to do so

may require leaving some PE's unused [9]. A wider corridor width uses

PE's more efficiently when embedding complex graphs. The degree, d, of

a lattice is the number oi data paths incident on a PE or a switch. (If

these two numbers are different, d is the minimum.) For example, Fig-

ure 2(a) has d=8 while Figure 2(b) has di=4. Finally, the amount of cross-

over capability c is the number of distinct data paths that can intersect

at one switch. A crossover capability c =2 permits a crossover while c=

does not. In the interest of generality, we will assume the "simplest" lat-

tice suitable for an interconnection pattern.

Programming an interconnection pattern requires that the

configuration setting of each relevant switch be defined. For the present

discussion it suffices that we give a logical specification of the setting

since the actual bit configurations are irrelevant. Accordingly, we will

code the compass points with single letters: .1

-12-

N(orth) M(aine) i.e., Northeast
S(outh) F(lorida) i.e., Southeast
E(as'.) A(rizona) i.e., Southwest
W(est) O(regon) i.e., Northwest

and we will assign settings as pairs of these letters. For example, EW is a

horizontal connection while ME is a 45 * angle. The lattice will always be

nxn where n is the number of processors on a side. We name the

switches and PE's with a two value index corresponding to its matrix posi-

tion. See Figure 8. We will name the lattice "L".
:1

111,2 1, 3 1,4

Figure 8. The two index coding scheme for a lattice.

As an example of this specification method, we observe that the mesh

interconnection pattern (Figure 3(a)) can be defined* by the two condi-

tions:

(i) i is odd andj is even implies L[i,j] = NS

(ii) i is even and j is odd implies L[[ij] EW

*In our presentation of interconnection patterns, we will use a simple declarative
specification. We are presently developing a configuration programming language, I-!
but until it is completed, we prefer the neutral declarative approach.

j

S.I

-13-

provided that the lattice is initially unconftgurzxd. A hexagonally connect-

td Interconnection pattern requires the further condition

(iii) i is odd and j is odd implies Lij] = OF

and requires a lattice of degree d=6 or (for symmetry) d=B. Notice

that this specification is somewhat more general than that used in

Figure 5.

Torus Interconnection Patterns A

Since the nxn torus interconnection pattern is simply an nxn

mesh with the top row and bottom row PE's connected and the left

column and right column PE's connected, (see .,igure t), one might

expect a one corridor, degree 4, crossover capable (c =2) lattice to

suffice to host this pattern. Surprisingly, it does not.

Theorem. Let L be a w=1, d=4, c=2 nxn lattice. L cannot be set

to connect the PE's into an nxn torus.

The proof involves arguing that the perimeter corridors must be used

for two purposes - to support both the vertical and horizontal "wrap

around" and thus cannot lead to an edge disjoint graph embedding.

Direct Torus Representation. Even when d=8, embedding the torus

is not trivial if we are to avoid multiple use of data paths.

Lattice. w=i,d=B,c=2.

Settings for Crossover Level 1.

First we connect the PE's in the rows. Then we run a data path from

the Northeast part of the first PE through the corridor above the row

and finally down into the Northeast part of the last PE in the row.

For example,

* . . C" - " '. . . . • . " -"4 .. " , . -. .. . '

-71

-14-

shows the construction for conditions (i) through (iii).

(i) [PE row connections] 1<ij<2n +1 and i is even and j is odd

imply L [• ,]EW.

(ii) (Northeast ports] i<2n+t and i is odd imply L[i,3]=AE and

L(i,2n+1] "AW.

(iii) [Corridor above rows] in<2n+1 and i is odd and 3<j<2n+÷

imply L(t,j]=EW.

jSettings for Crossover Level 2. A similar strategy is used for the

columns.

(iv) [PE column connections] 1<i,J<2n+l and i is odd and j is

even imply L[ij)=NS.

(v) [Southwest ports] j<2n+l and j is odd imply L[3j]=MS'and

L.[2n+l,j]=NM.

(vi) (Corridor left of columns] j <2n+I and Y is odd and 3<i<2n +1

imply L [ij]=NS.

Figure 9 illustrates the entire construction.

The difficulty with this interconnection pattern, of course, is that

it has long data paths that are subject to propagation delay. Some

algorithms can accept such a delay, but generally we would like to

reduce it. Accordingly, we prefer the following more intricate pat-

tern that interleaves the row and column processing elements so Lt5

that there is a fixed bound on the distance a signal must travel,

-15-

o -0- -0- -0- -0-P-0- -0.- 0 A
- - 0

4 0

".0 -

the la tic o Fi u e -a. - 0ge

-
.-

,

J
I

0 0 0 0 0 0 0 0

Figure 9. Direct embedding of the torus into
the lattice of Figure 2(a). Edges
of liko color intersecting at. a
swiLcit arc! connected.

00-0 0- -~p-0~ ,- -0s 0-0 0-0. 0-- p-0~ ~-0,, 0

0 -0- 0- 0- 0- '0- 0- %0- -0

N. 0 vo % % S S

% I %"0S S

0 -- 0 -0 -a 0 0 0

Fiue0 SIn telad emedin Sof thtru

int th latc of Fiur 2(a).

-. .6-

Interleaved Torus Representaution

Lattice. w=1, d=1, c=2,

Settings for Crossover Level 1.

First we connect alternate PE's in rows. F er example,

The end connections are specified by

(i) [East port, enid PE's] i is even implies L[I1,3)=EW and

L[i,2n+l]= WO.

The westerly port connections of each P'i Pre given ty

(ii) [West port] i is even and 3<1<2n+l and I is odd imply
L[,j]=0E.

The connections in the corridor above the row are giricn by

(iii) [Northeast port] i<2n+1 and i is odd and 3!_j<2n+l and j is

odd imply L(ij]=AE.

(iv) i<2n+l and i is odd and 3<j and j is even imply L[i,j]= WF.

Settings for Crossover Level 2. The columns are connected in a

manner analogous to the rows.

(i) [South port, end PE's] j is even implies L[3,j]=NS and

L[2n +1,] =ON,

(ii) [Northport] j is even and 3<i<2n+1 and i is odd imply

L [i~jIJ=S.

(iii) [Southwest port] j <2n + 1 and ' is odd and 3Ui<2n + 1 and i is

odd imply L[ij]=S,.

-17- 4
(iv) j<Pv+1 and j is odd and 3<0 and i is even imply L[tj]=NF.

The entire constructlor is chown in Figure 10.

Clearly the maximum number of switches that any data item must

pass through is three. We have increased the Local2i of the torus

embedding. It is, therefore, more amenable VLSI implementation

and can be used in an arbitrarily large lattice with only a constant

delay. ,

Complete Bnary 7Trees

Although an efficient embedding of complete binary trees into

the plane is known [10], its direct application to interconnection pat-

tern programming is very wasteful. (See Figure 11.) In fact, since a

complete binary tree of depth m has 2 m1- nodes, we can expect a

lattice with exh2 PE's to host a complete binary tree of depth 2k

with one unused node. Call this node a "spare." We can expect that

the simplest lattice hosting this pattern will not require crossover

capability, since trees are planar, and will require only degree d=4,

since trees have at most degree 3 connections. (The lattice then is

given by w =1, d=4, c=1.) But if the reader attempts to develop an

interconnection with these conditions, he will find it to be unexpect-

edly difficult.

The overall strategy is to begin with small, complete binary trees

embedded in square regions of the lattice. To reduce propagation delay

the root will be placed in the center of the block. Each block will contain

a spare PE. We compose four such square blocks together to form a

larger binary tree in a larger square block. Three of the 'our spare PE's

will be used as nodes in the composed tree; the fourth spare will become

ii

__ __ _ __ _

f

g• • -18-

: • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

•:~~~ o -D - 0-[---0 0 0'- 0 0-0-(3--o- .0 0
! .0 0 0 0-0--0 00----- 0 0 0

0 00 0 00 0 0 000

o -o- o--o ---- o
0 0 0 0 0 0 0 0 0 0 0 0 0

E 0oC3onoC3o0 o 3o0 (]or[]o

[oD--O_-o--O 0 0]€ L_3- -o-0--0o- o
S0 0 0 0 0 0 0 0 0 0 0 4

0 El 0 0 ---- 0 0 --- 0 0 0] 0-'

000000000 0 0 0 0 0 0

lijo

Figure 11. Hyper-H- tree (Figure 1(d)) embedding [10]. Filled PE's
are unused.

2 ~the spare of the new block. The goal is to place the spares so that they,

will be conveniently located for the compositon,.

Define three types of tree embeddings:

S~the exiting edge from the block's root.

" i T'ype B blocks have their spare PE in the corner on the same side as

S~the exiting edge from the block's root,

Type C blocks have their spare PE in the corner on the opposite side •

of the exiting edge from the root.

_] I,

-19-

Figure 12 Illustrates the three types of blocks and de~monstrates that

they can be inductively produced using blocks of these types.

A B A B

ElR R

n-.-- -n nn • -

i-A
A C F iA L0_ I

Type A Type BR Type Cua

Figure 12. Schemat.c of blocks composed to form larger blocks. Solid
squares represent original roots; open squares represent
spares, Superscript "F" means reflect with respect to hor-
izont-.l axis (flip); superscript "R" means reflect with respect
to vertical axis (reverse).

Notice. thet as part of the inductive hypothesis, we must argue that

the perimeter s-,tchrs are available for routing the new edges, This is

obviously tt,'e if they are avwilable in the basis blocks, The smallest

blocks tt.at ve have been eble to find with this property are 4x4 blocks

-'mbeddiag 15 nude binary trees, These are illustrated in Figure 13.

The coceptital algor'1hmn is clear. Refer to Figure 14. Begin with an

objective block type, c g., Type B, and a lattice of size X2kx PE's. Recur-

sively eiibed the four subtrces in lattices of size ,-lx2k-b such that the

proper block types are selected. In the basis cases (2Ox2O), use an explicit

embedding. Notice that the results may require reflection, Connect the

three spares by appropriate switch settings. This latter operation is

always possible based on an inductive argument that depends upon two

facts:

L -I

- ~~~~-20- -.- _ -I

00 0

0 0

0~ 0 a- 00 0

000 00 0 0 ~ ~ o. 0 0

0 0

00 0 a

0 00 0 0010 00000 000 0000000 0000000

o y 0 0 0
0iur H. 0~bddn 0r 0 '0 0 I 05 0od bia rc

0- -0.4

-21-

-i

(a) (b)

00 00J

L 0

0 0 0 0 0 0

Figure 13. Basis blocks for planar binary tree embedding.

(a) After the basis connection, all spares have their origin as Type C

S~basis block elements, and

(b) None of the switches surrounding a Type C basis block spare is

Vused and so there are three directions of access.

This guarantees that the three data paths can always be assigned. The

detailed program is omitted.

Clearly, we have achieved our goal of complete PE usage of this sim-

ple lattice. If the available lattice were more complex, e.g., had degree 8

or multiple corridors, then the same embedding would work and some

minor optimizations would be possible.

Lacing. a Corridor

Although we could present many more of our embeddiiigs - a broad-

cast tree, a double tree, leaves on a line t.rce, shuffle exchange, etc. - it is

perhaps more instructivc to illustrate a technique that gives unexpected

power fur programm-ag complex graphs. It is called "lacing a corridor"

II ~-22- I

and it takes optimum advantage of a fixed architectural resource, the

etirridor width,

Suppose one is embedding an interconnection pattern and must

move a large number of distinct data paths across a region of the lattice.

Bly definition, the corridor width, wi, is the number of switches separating

K adjacent PE's. Thus, if the degree d=4, then, w distinct data paths can be

~ t routed between a pair of PE's. It would appear that for the degree d=8

[1 lattice, w distinct data paths are still the maximum that can be routed

~ I down a corridor. But we can do much better.

The idea behind lacing is to begin with straight data paths down a

corridor and then to add zig-zag paths that exploit the higher degree and

the crossover capability of the switches. For example, Figure 15

9% . ' % * % * 9%

to 9 0 % I ' * % so 0 9%

o 9% 0 so .. I 9% d- Go * % do $ Go 9%

0% so 0, so 9% . , * % 's * *so9

Figure 15, Lacing ten distinct data paths through four switches.

shows a w=4, d=81, c=3 lattice in which ten distinct data paths have been

squeezed through the four available switches! This is the maximum possi-

ble since the bisection width of this portion of the lattice is ten. (Bisec-

Lion width is a concept introduced by Thompson [11] referring to the Y

minimum number of wires cut by a line bisecting a VLSI layout.) If we

-23-

expand our scope somewhat and include the switches that bound the cor-

ridor, Lhcn we can increase the number of distinct paths by two. (We will

ignore this optimization in the lacing definition below,)

Lcattce. w>I, d=B, c =3.

The cinstruction is limited to a region bounded by four PE's. The upper

left hand corner PE is L[rs].

Settings for crossover level 1. [Horizontal Path]

(i) i!W~w and Oj&w+ 1 imply L[r+is+f]IEWW

Settings for crossover level 2. [Dotted Path]

(ii) tli-1v-1 and Osc.:w+l and I is even imply L[r+i,s+j]=AF.

(iii) Ii. siw -1 and 0&1-w+1 and j is odd imply L[r+i+i,s+j]=0M. j
Settings for crossover Level 3. [Dashed Path]

(iv) 1!giew -1 and Ocjzw4+1 and j is even imply L[r+i+l,s +j]=OM.

(v) 1!0w-I and Ogj!w+I and is odd imply L[r+ .s+]4j =AF.

Notice that if the switches had even higher crossover capability c =4,

which is the maximum for degree 8 switches, then we could even route

vertical wires across the laces if they were needed.

Conc lusions

We have introduced the CHiP architecture and argued that its provi-

sion for interconnection pattern programming alleviates many of the

difficulties encountered in parallel program development. This

simplification is achieved in two ways. First, the rigidity of a fixed inter-

connection structure is no longer an obstacle when one wants to program

an algorithm that uses a different interconnection pattern. And

-24-

secondly, there is a clean sep.aration between routing the data and pro- '

gt'arming the activity of the PE's.j

Additionally we have demonstrated that interconnection program-

ming is an interesting and challenging activity. We wave shown that local-

ity an be increased by careful study of the torus. We have shown that it is

possible to embed the complete binary tree to achieve essentially corn-

plete PE utilization. Trhe result involves an interesting assignment of

spar PE'. An wehave sho--'n that there are generaltehius(g.

corido laing tobefound.

Aclcnc wledgmeints

It. is a pleasure to thank Ching C. Hsiao for his original use of lacuiig

and Paul McNabb for developing the software to produce these embed-

dings and for stimulating discussions of the binary tree embedding.

Thanks are due to Paul Morrissett for programming the I urus and lacing

figures anid to Julie H-anover for excellent manuscript preparation.

i f f 11 , l~n nr UII I
.1()I JIi JIf JJ if ifj f j(

III I 'I 11 11 j I'l f If' JIi H I

iFIF If If If f1 If -F~f If- 'it Ifff FTI

CegU, Szchan 1825L1 A.D.ý ,)LJ

1)1 E,/. ý

r'XIF f-)[VX)(-[lr-. .[3

-25-

References

[t] P. A. Gilmore, K. E. Batcher, M. H. Davis, R. W. Lott and J. T. Burkley
Massively Parallel Processor .
Techniccat Report GFR-16684, Goodyear Aerospace Corporation,

July 1979.

[2] Sally A. Browning
The Tree Machine: A Highly Concurrent Programming Environment
Ph.D. Thesis, California Institute of Technology, January, 1980

[3] Bart Locanthi
The Homogeneous Machine
Ph.D. Thesis, California Institute of Technology, 1960

[4] H. T. Kung and C. E. Leiserson
Systolic Arrays (for VLSI)
Technical Report CS-79-103, Carnegie-Mellon University, December

1979 (also in [10])

[5] Jon L. Bentley and H. T. Kung
A Tree Machine for Searching Problems
In Proceedings of the 8th Internrational Conference on Paraltlel

Processing, IEEE, pp. 257-266, 1979 4
[6] J. T. Schwartz

Ultracomputers
T'ransactions on Programming LInguages and Systems, ACM, 1980

[7] F. P. Preparata and Jean Vuillemin
The Cube connected cycles: A Versatile Network for Parallel

Computation
In Proceedings of tihe 20th Annual Symposium on the Foundabtions

of Computer Science, IEEE October, 1979

[8] D. B, Gannon and Lawrence Snyder
Linear Recurrence Algorithms for VLSI: The Configurable, Highly

Parallel Approach
In Proceedings of the 1 Oth International Conference on Paroallel

Processing, IEEE, 1981

[9] L. Snyder
Overview of the CHiP Computer
In VLSI 81, Academic Press, 1981

[10] Carver Mead and Lynn Conway
Introduction to VLSI Systems
Addison Wesley, 1980

[11] C. D. Thompson
A Complexity Theory for VLSI
Ph.D. Thesis Carnegie-Mellon Uni'vrsity, 1.980

LY.

